EWAD640CFXL EWAD770CFXL EWAD850CFXL EWAD900CFXL EWADC10CFXL EWADC11CFXL EWADC12CFXL EWADC13CFXL EWADC14CFXL EWADC15CFXL EWADC16CFXL
Cooling capacity Nom. kW 640 (1), 415 (2) 772 (1), 510 (2) 852 (1), 583 (2) 902 (1), 612 (2) 1,027 (1), 701 (2) 1,089 (1), 734 (2) 1,269 (1), 902 (2) 1,349 (1), 957 (2) 1,435 (1), 963 (2) 1,493 (1), 1,013 (2) 1,555 (1), 1,039 (2)
Mechanical capacity kW 225 (2) 262 (2) 269 (2) 290 (2) 325 (2) 355 (2) 366 (2) 392 (2) 472 (2) 480 (2) 517 (2)
Capacity control Method   Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless
  Minimum capacity % 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
Power input Cooling Nom. kW 257 (1), 53.7 (2) 272 (1), 62.0 (2) 293 (1), 64.7 (2) 324 (1), 69.8 (2) 360 (1), 75.7 (2) 399 (1), 83.4 (2) 397 (1), 86.4 (2) 439 (1), 92.8 (2) 454 (1), 101 (2) 492 (1), 109 (2) 530 (1), 115 (2)
EER 2.49 (1), 11.91 (2) 2.84 (1), 12.44 (2) 2.90 (1), 13.17 (2) 2.78 (1), 12.93 (2) 2.85 (1), 13.56 (2) 2.73 (1), 13.05 (2) 3.19 (1), 14.68 (2) 3.08 (1), 14.55 (2) 3.16 (1), 14.21 (2) 3.04 (1), 13.72 (2) 2.93 (1), 13.50 (2)
ESEER 3.44 3.52 3.78 3.50 3.74 3.54 3.88 3.78 4.01 3.96 3.85
IPLV 3.86 4.03 4.10 4.05 4.00 3.95 4.36 4.25 4.36 4.35 4.26
Dimensions Unit Depth mm 6,300 7,200 8,100 8,100 9,000 9,000 10,800 10,800 10,800 10,800 10,800
    Height mm 2,565 2,565 2,565 2,565 2,565 2,565 2,565 2,565 2,565 2,565 2,565
    Width mm 2,480 2,480 2,480 2,480 2,480 2,480 2,480 2,480 2,480 2,480 2,480
Weight Operation weight kg 8,795 9,390 9,995 9,995 11,459 11,719 13,566 13,566 14,806 14,886 14,936
  Unit kg 8,050 8,620 9,190 9,190 10,450 10,710 12,190 12,190 12,830 12,910 12,960
Casing Colour   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white
  Material   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
Water heat exchanger Type   Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube
  Water flow rate Cooling Nom. l/s 27.8 (1), 27.8 (2) 33.5 (1), 33.5 (2) 37.0 (1), 37.0 (2) 39.2 (1), 39.2 (2) 44.6 (1), 44.6 (2) 47.3 (1), 47.3 (2) 55.1 (1), 55.1 (2) 58.6 (1), 58.6 (2) 62.4 (1), 62.4 (2) 64.9 (1), 64.9 (2) 67.6 (1), 67.6 (2)
  Water pressure drop Cooling Nom. kPa 85 (1), 128 (2) 105 (1), 172 (2) 90 (1), 178 (2) 101 (1), 198 (2) 111 (1), 245 (2) 124 (1), 272 (2) 98 (1), 232 (2) 110 (1), 259 (2) 139 (1), 305 (2) 150 (1), 328 (2) 162 (1), 354 (2)
  Water volume l 741 771 808 808 1,012 1,012 1,372 1,372 1,965 1,965 1,965
  Insulation material   Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell
Air heat exchanger Type   High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type
Fan Quantity   10 12 14 14 16 16 20 20 20 20 20
  Type   Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller
  Air flow rate Nom. l/s 50,368 60,441 70,515 70,515 80,588 80,588 95,253 95,253 95,253 95,253 95,253
  Diameter mm 800 800 800 800 800 800 800 800 800 800 800
  Speed rpm 920 920 920 920 920 920 920 920 920 920 920
Fan motor Drive   VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven
  Input Cooling W 14,800 17,000 18,100 19,800 21,700 23,700 23,700 25,900 25,900 28,300 29,600
Compressor Quantity   2 2 2 2 2 2 2 2 2 2 2
  Type   Asymm single screw Asymm single screw Asymm single screw Asymm single screw Asymm single screw Asymm single screw Asymm single screw Asymm single screw Asymm single screw Asymm single screw Asymm single screw
  Oil Charged volume l 38 38 38 38 44 50 50 50 50 50 50
Operation range Air side Cooling Max. °CDB 45 45 45 45 45 45 45 45 45 45 45
      Min. °CDB -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20
  Water side Cooling Max. °CDB 15 15 15 15 15 15 15 15 15 15 15
      Min. °CDB -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8
Sound power level Cooling Nom. dBA 96 97 97 97 98 98 99 99 99 99 99
Sound pressure level Cooling Nom. dBA 76 (3) 76 (3) 77 (3) 77 (3) 77 (3) 77 (3) 77 (3) 77 (3) 77 (3) 77 (3) 77 (3)
Refrigerant Type   R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a
  GWP   1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430
  Circuits Quantity   2 2 2 2 2 2 2 2 2 2 2
Charge Per circuit kg 64.0 73.0 81.0 81.0 91.0 91.0 107.0 107.0 112.5 124.0 124.0
  Per circuit TCO2Eq 91.5 104.4 115.8 115.8 130.1 130.1 153.0 153.0 160.9 177.3 177.3
Piping connections Evaporator water inlet/outlet (OD)   DN150PN16(168.3mm) DN150PN16(168.3mm) DN150PN16(168.3mm) DN150PN16(168.3mm) DN200PN16(219.1mm) DN200PN16(219.1mm) DN200PN16(219.1mm) DN200PN16(219.1mm) DN250PN16(273mm) DN250PN16(273mm) DN250PN16(273mm)
Air temperature for free cooling 100% °C -0.8 -0.1 1.2 0.4 0.9 0.1 2.9 2.1 1.3 0.7 0.1
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10
Unit Starting current Max A 605 619 658 658 924 971 1,030 1,030 1,030 1,073 1,086
  Running current Cooling Nom. A 404 430 467 515 568 628 636 701 720 773 825
    Max A 476 510 561 605 672 731 811 875 875 929 982
  Max unit current for wires sizing A 520 556 612 660 733 797 884 955 955 1,013 1,072
Fans Nominal running current (RLA) A 40 48 56 56 64 64 80 80 80 80 80
Compressor Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Voltage V 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10
  Maximum running current A 218 231 231 274 274 333 333 398 398 398 451
  Starting method   Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta
Compressor 2 Maximum running current A 218 231 274 274 333 333 398 398 398 451 451
Notes Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744
  Data is calculated at ambient air temperature 5°C, inlet water temperature 16°C. Data is calculated at ambient air temperature 5°C, inlet water temperature 16°C. Data is calculated at ambient air temperature 5°C, inlet water temperature 16°C. Data is calculated at ambient air temperature 5°C, inlet water temperature 16°C. Data is calculated at ambient air temperature 5°C, inlet water temperature 16°C. Data is calculated at ambient air temperature 5°C, inlet water temperature 16°C. Data is calculated at ambient air temperature 5°C, inlet water temperature 16°C. Data is calculated at ambient air temperature 5°C, inlet water temperature 16°C. Data is calculated at ambient air temperature 5°C, inlet water temperature 16°C. Data is calculated at ambient air temperature 5°C, inlet water temperature 16°C. Data is calculated at ambient air temperature 5°C, inlet water temperature 16°C.
  Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744 Cooling: evaporator 16/10°C, ambient 35°C, unit at full load operation; standard: ISO 3744
  Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 %
  Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage.
  Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  Fluid: Ethylene glycol 30% Fluid: Ethylene glycol 30% Fluid: Ethylene glycol 30% Fluid: Ethylene glycol 30% Fluid: Ethylene glycol 30% Fluid: Ethylene glycol 30% Fluid: Ethylene glycol 30% Fluid: Ethylene glycol 30% Fluid: Ethylene glycol 30% Fluid: Ethylene glycol 30% Fluid: Ethylene glycol 30%
  Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.
  The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding
  Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1
  Unit performances refer to ideal running conditions that are reproducible in laboratory test environment in accordance to recognized industry standards (i.e. EN14511) Unit performances refer to ideal running conditions that are reproducible in laboratory test environment in accordance to recognized industry standards (i.e. EN14511) Unit performances refer to ideal running conditions that are reproducible in laboratory test environment in accordance to recognized industry standards (i.e. EN14511) Unit performances refer to ideal running conditions that are reproducible in laboratory test environment in accordance to recognized industry standards (i.e. EN14511) Unit performances refer to ideal running conditions that are reproducible in laboratory test environment in accordance to recognized industry standards (i.e. EN14511) Unit performances refer to ideal running conditions that are reproducible in laboratory test environment in accordance to recognized industry standards (i.e. EN14511) Unit performances refer to ideal running conditions that are reproducible in laboratory test environment in accordance to recognized industry standards (i.e. EN14511) Unit performances refer to ideal running conditions that are reproducible in laboratory test environment in accordance to recognized industry standards (i.e. EN14511) Unit performances refer to ideal running conditions that are reproducible in laboratory test environment in accordance to recognized industry standards (i.e. EN14511) Unit performances refer to ideal running conditions that are reproducible in laboratory test environment in accordance to recognized industry standards (i.e. EN14511) Unit performances refer to ideal running conditions that are reproducible in laboratory test environment in accordance to recognized industry standards (i.e. EN14511)
  Weight and dimensions are indicative, for specific values refer to certified drawings issued by the factory Weight and dimensions are indicative, for specific values refer to certified drawings issued by the factory Weight and dimensions are indicative, for specific values refer to certified drawings issued by the factory Weight and dimensions are indicative, for specific values refer to certified drawings issued by the factory Weight and dimensions are indicative, for specific values refer to certified drawings issued by the factory Weight and dimensions are indicative, for specific values refer to certified drawings issued by the factory Weight and dimensions are indicative, for specific values refer to certified drawings issued by the factory Weight and dimensions are indicative, for specific values refer to certified drawings issued by the factory Weight and dimensions are indicative, for specific values refer to certified drawings issued by the factory Weight and dimensions are indicative, for specific values refer to certified drawings issued by the factory Weight and dimensions are indicative, for specific values refer to certified drawings issued by the factory
  For specific information about additional options refer to the options section in the data book For specific information about additional options refer to the options section in the data book For specific information about additional options refer to the options section in the data book For specific information about additional options refer to the options section in the data book For specific information about additional options refer to the options section in the data book For specific information about additional options refer to the options section in the data book For specific information about additional options refer to the options section in the data book For specific information about additional options refer to the options section in the data book For specific information about additional options refer to the options section in the data book For specific information about additional options refer to the options section in the data book For specific information about additional options refer to the options section in the data book