EWAD180TZXR EWAD220TZXR EWAD265TZXR EWAD290TZXR EWAD330TZXR EWAD360TZXR EWAD380TZXR EWAD410TZXR EWAD440TZXR EWAD490TZXR EWAD540TZXR EWAD580TZXR EWAD630TZXR EWAD690TZXR
Cooling capacity Nom. kW 179.6 216.4 265.3 288.2 331.7 359.8 366.4 407 440.9 490.3 536.4 577.3 628.7 682.3
  Rated kW 179.6 216.4 265.3 288.2 331.7 359.8 366.4 407.0 440.9 490.3 536.4 577.3 628.7 682.3
Capacity control Method   Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable
  Minimum capacity % 33.3 28.6 30.8 28.6 25 23.5 16.7 15.4 14.3 16.7 15.4 14.3 13.3 12.5
Power input Cooling Nom. kW 56.08 68.4 84.56 89.84 105.6 113 115.8 128.2 138 155.7 169.4 185 201.5 215.9
EER 3.203 3.163 3.137 3.207 3.14 3.183 3.164 3.175 3.173 3.15 3.166 3.12 3.121 3.16
ESEER 5.02 5.09 5.1 5.15 5.22 5.23 4.96 5.1 5.01 4.96 5.18 5.09 5.12 5.07
IPLV 6.32 6.2 6.33 6.26 6.32 6.37 6.31 6.47 6.39 6.34 6.48 6.44 6.46 6.51
SEER 4.9 4.9 5.0 5.2 5.2 5.3 5.0 5.1 5.1 5.7 5.3 5.3 5.4 5.5
Dimensions Unit Depth mm 4,361 5,261 5,261 3,218 4,117 4,117 4,117 4,117 5,015 5,015 5,015 5,917 5,917 6,817
    Height mm 2,270 2,270 2,270 2,222 2,222 2,222 2,222 2,222 2,222 2,222 2,222 2,222 2,222 2,222
    Width mm 1,224 1,224 1,224 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258
Weight Operation weight kg 2,178 2,502 2,684 2,831 3,133 3,186 4,612 4,674 4,674 5,059 5,347 5,651 5,733 6,038
  Unit kg 2,158 2,402 2,532 2,679 3,084 3,136 4,442 4,516 4,516 4,901 5,077 5,381 5,471 5,783
Casing Colour   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white
  Material   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
Water heat exchanger Type   Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube
  Water flow rate Cooling Nom. l/s 8.6 10.4 12.7 13.8 15.9 17.2 17.5 19.5 21.1 23.5 25.7 27.6 30.1 32.7
  Water pressure drop Cooling Nom. kPa 23.5 25.3 19.2 22.2 23.3 26.1 39.9 41.2 47.6 55.7 29.5 33.7 44.3 57.1
  Water volume l 20.3 23.5 38.8 38.8 49.5 49.5 170 158 158 158 270 270 262 255
  Insulation material   Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell
Air heat exchanger Type   High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type
Heat exchanger Indoor side   water water water water water water water water water water water water water water
  Outdoor side   Air Air Air Air Air Air Air Air Air Air Air Air Air Air
Fan Quantity   4 5 5 6 8 8 8 8 10 10 10 12 12 14
  Type   Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller
  Air flow rate Nom. l/s 16,015 20,665 20,019 24,023 33,064 32,030 33,064 32,030 41,330 41,330 40,038 49,597 48,046 56,053
    Cooling Rated m³/h 57,654 74,394 72,068 86,483 119,030 115,308 119,030 115,308 148,788 148,788 144,137 178,549 172,966 201,791
  Diameter mm 800 800 800 800 800 800 800 800 800 800 800 800 800 800
  Speed rpm 700 700 700 700 700 700 700 700 700 700 700 700 700 700
Fan motor Drive   VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven
  Input Cooling W 3,560 4,450 4,450 5,340 7,120 7,120 7,120 7,120 8,900 8,900 8,900 10,680 10,680 12,460
Compressor Quantity   1 1 1 1 1 1 2 2 2 2 2 2 2 2
  Type   Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression
  Driver   Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor
  Oil Charged volume l 13 13 13 13 13 13 26 26 26 26 26 26 26 26
Operation range Air side Cooling Max. °CDB 49 49 49 49 49 49 49 49 49 49 49 49 49 49
      Min. °CDB -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18
  Water side Cooling Max. °CDB 15 15 15 15 15 15 15 15 15 15 15 15 15 15
      Min. °CDB -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8
Sound power level Cooling Nom. dBA 89.0 89.0 89.0 89.0 91.0 92.0 92.0 92.0 92.0 92.0 92.0 92.0 93.0 94.0
Sound pressure level Cooling Nom. dBA 69.0 70.0 69.0 70.0 71.0 72.0 72.0 72.0 72.0 72.0 72.0 72.0 72.0 73.0
Refrigerant Type   R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a
  GWP   1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430
  Circuits Quantity   1 1 1 1 1 1 2 2 2 2 2 2 2 2
  Charge kg 31 37 45 49 57 61 62 69 75 84 91 98 107 116
Charge Per circuit kgCO2Eq 44,330 52,910 64,350 70,070 81,510 87,230 44,330 49,335 53,625 60,060 65,065 70,070 76,505 82,940
  Per circuit TCO2Eq 44.3 52.9 64.4 70.1 81.5 87.2 44.3 49.3 53.6 60.1 65.1 70.1 76.5 82.9
Piping connections Evaporator water inlet/outlet (OD)   88.9mm 88.9mm 88.9mm 88.9mm 88.9mm 88.9mm 139.7mm 139.7mm 139.7mm 139.7mm 168.3mm 168.3mm 168.3mm 168.3mm
Space cooling A Condition 35°C Pdc kW 179.6 216.4 265.3 288.2 331.7 359.8 366.4 407.0 440.9 490.3 536.4 577.3 628.7 682.3
    EERd   3.2 3.2 3.1 3.2 3.1 3.2 3.2 3.2 3.2 3.2 3.2 3.1 3.1 3.2
  B Condition 30°C Pdc kW 133.0 160.1 196.7 213.9 245.6 266.2 271.4 302.3 326.7 380.2 398.4 427.6 465.8 505.6
    EERd   4.1 3.9 4.0 4.0 3.8 3.9 4.2 4.2 4.2 4.7 4.3 4.2 4.2 4.3
  C Condition 25°C Pdc kW 84.5 101.5 124.8 135.7 155.7 168.8 172.5 192.2 207.7 241.7 253.2 271.7 296.1 321.5
    EERd   6.0 5.8 5.9 6.2 6.0 6.1 6.0 6.2 6.2 6.8 6.4 6.3 6.4 6.5
  D Condition 20°C Pdc kW 37.8 45.6 56.0 60.8 69.9 75.7 77.2 85.7 92.6 108.1 113.0 121.3 132.3 143.7
    EERd   7.2 7.7 7.6 8.1 8.6 9.1 7.8 7.7 7.8 9.1 8.0 8.0 8.5 8.7
  ηs,c % 191.4 192.2 197.4 203.8 203.4 209.4 196.2 199.8 201.0 223.4 208.2 207.0 212.6 216.2
General Supplier/Manufacturer details Name and address   Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy
LW(A) Sound power level (according to EN14825) dB(A) 89.0 89.0 89.0 89.0 91.0 92.0 92.0 92.0 92.0 92.0 92.0 92.0 93.0 94.0
Cooling Cdc (Degradation cooling)   0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Standard rating conditions used Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application
Power consumption in other than active mode Crankcase heater mode PCK W 0.120 0.120 0.120 0.120 0.120 0.120 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250
  Off mode POFF W 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
  Standby mode Cooling PSB W 0.050 0.050 0.050 0.050 0.050 0.050 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
  Thermostat-off mode PTO Cooling W 0.160 0.160 0.160 0.160 0.160 0.180 0.310 0.590 0.590 0.350 0.530 0.530 0.390 0.470
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Unit Starting current Max A 3 3 3 3 3 3 3 3 3 3 3 3 3 3
  Running current Cooling Nom. A 97 116 142 151 179 190 199 217 235 262 284 310 338 361
    Max A 122 145 172 188 223 237 245 264 290 318 344 376 408 440
  Max unit current for wires sizing A 133 157 186 188 242 251 266 288 315 346 372 377 444 479
Fans Nominal running current (RLA) A 10 13 13 16 21 21 21 21 26 26 26 31 31 36
Compressor Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10
  Maximum running current A 112 132 159 172 202 216 112 122 132 146 159 172 188 202
  Starting method   Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter
Compressor 2 Maximum running current A             112 122 132 146 159 172 188 202
Notes Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511
  Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units
  Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water
  Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current.
  Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage.
  For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS).
  Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.