EWAT085B-SRA1 EWAT115B-SRA1 EWAT135B-SRA1 EWAT155B-SRA2 EWAT175B-SRA1 EWAT195B-SRA2 EWAT205B-SRA2 EWAT215B-SRA1 EWAT240B-SRA2 EWAT260B-SRA2 EWAT290B-SRA1 EWAT310B-SRA2 EWAT330B-SRA2 EWAT340B-SRA1 EWAT350B-SRA2 EWAT420B-SRA2 EWAT460B-SRA2 EWAT510B-SRA2 EWAT570B-SRA2 EWAT610B-SRA2 EWAT670B-SRA2
Cooling capacity Nom. kW 76.32 104.78 123.67 149.61 164.58 180.89 199.92 203.05 230.33 247.63 265.52 289.52 310.75 328.17 329.79 397.33 441.96 486.05 532.44 576.51 634.99
  Rated kW 76.32 104.78 123.67 149.61 164.58 180.89 199.92 203.05 230.33 247.63 265.52 289.52 310.75 328.17 329.79 397.33 441.96 486.05 532.44 576.51 634.99
Capacity control Method   Staged Staged Staged Variable Staged Variable Variable Staged Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable
  Minimum capacity % 50 38 50 25 38 21 19 50 17 25 24 14 13 33 19 17 15 14 12 11 17
Power input Cooling Nom. kW 33.8 40.3 53.1 65.9 72.8 73.2 84.7 91.9 89.1 100 115 118 129 122 140 147 181 197 230 244 251
EER 2.26 2.6 2.33 2.27 2.26 2.47 2.36 2.21 2.59 2.48 2.3 2.44 2.41 2.69 2.35 2.7 2.43 2.46 2.31 2.35 2.53
ESEER 3.95 4.07 3.9 3.81 4.1 3.88 3.97 3.73 4.09 3.89 4.12 4.05 3.96 4.2 3.97 4.09 4.13 4.02 4.13 4.01 4.1
IPLV 4.67 4.97 4.5 4.63 4.74 4.62 4.72 4.36 4.88 4.63 4.84 4.83 4.72 5.01 4.7 4.81 4.86 4.75 4.84 4.84 4.89
SEER 3.8 4.11 3.8 3.8 4.17 3.9 3.92 3.82 4.29 4.01 4.26 4.2 4.26 4.4 4.04 4.42 4.35 4.41 4.3 4.37 4.41
Dimensions Unit Depth mm 2,120 2,660 2,660 3,570 3,180 4,170 4,170 3,780 2,326 2,326 2,326 3,226 3,226 3,226 3,226 4,126 4,126 4,126 4,126 5,025 5,874
    Height mm 1,801 1,801 1,801 1,822 1,801 1,822 1,822 1,822 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540
    Width mm 1,204 1,204 1,204 1,204 1,204 1,204 1,204 1,204 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236
Weight Operation weight kg 696 783 830 1,035 1,006 1,198 1,190 1,210 1,822 1,849 1,951 2,268 2,296 2,350 2,324 2,784 2,954 3,111 3,360 3,762 4,089
  Unit kg 689 773 820 1,026 993 1,185 1,177 1,191 1,815 1,843 1,935 2,251 2,277 2,330 2,304 2,754 2,921 3,078 3,312 3,718 4,053
Casing Colour   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white
  Material   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
Water heat exchanger Type   Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate
  Water flow rate Cooling Nom. l/s 3.7 5 5.9 7.2 7.9 8.7 9.6 9.7 11 11.9 12.7 13.9 14.9 15.7 15.8 19 21.2 23.3 25.5 27.6 30.4
  Water pressure drop Cooling Nom. kPa 24.6 32.2 23.8 58.5 37.5 41.6 49.9 36.8 64.5 73.5 59.9 42.1 47.8 71.7 53.2 50.4 61.1 72.7 58.9 68 81
  Water volume l 5 6 9 7 12 11 11 16 11 11 16 19 19 20 19 28 28 28 42 42 42
  Insulation material   Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell
Air heat exchanger Type   Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel
Heat exchanger Indoor side   water water water water water water water water water water water water water water water water water water water water water
  Outdoor side   Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air
Fan Quantity   4 6 6 8 8 10 10 10 4 4 4 5 5 6 5 7 7 8 8 9 11
  Type   Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller
  Air flow rate Nom. l/s 4,929 7,396 7,396 11,352 9,838 14,202 14,202 12,325 17,064 17,064 17,064 21,330 21,330 25,596 21,330 29,862 29,862 34,128 34,128 38,394 46,926
    Cooling Rated m³/h 17,744.4 26,625.6 26,625.6 40,867.2 35,416.8 51,127.2 51,127.2 44,370 61,430.4 61,430.4 61,430.4 76,788 76,788 92,145.6 76,788 107,503.2 107,503.2 122,860.8 122,860.8 138,218.4 168,933.6
  Diameter mm 450 450 450 450 450 450 450 450 800 800 800 800 800 800 800 800 800 800 800 800 800
  Speed rpm 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 780 780 780 780 780 780 780 780 780 780 780 780 780
Fan motor Drive   Phase cut Phase cut Phase cut Phase cut Phase cut Phase cut Phase cut Phase cut VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven
  Input Cooling W 1,400 2,200 2,200 2,900 2,900 3,600 3,600 3,600 4,700 4,700 4,700 5,900 5,900 7,100 5,900 8,200 8,200 9,400 9,400 10,600 12,900
Compressor Quantity   2 2 2 4 2 4 4 2 4 4 3 4 4 3 4 4 5 5 6 6 6
  Type   Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression
  Driver   Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor
  Oil Charged volume l 6.5 7.69 8.88 13 10.7 14.1 15.3 12.6 16.5 17.7 17 19.1 20.2 18.9 21.4 23.3 27.7 29.6 34 35.9 37.8
Operation range Air side Cooling Max. °CDB 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43
      Min. °CDB -10 -10 -10 -10 -10 -10 -10 -10 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18
  Water side Cooling Max. °CDB 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
      Min. °CDB -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13
Sound power level Cooling Nom. dBA 78.6 82.5 84.1 81.6 86.3 83.9 85.2 87.8 87 87.2 87.5 88.2 88.3 89.1 88.4 89.8 89.8 90.4 90.5 91 91.8
Sound pressure level Cooling Nom. dBA 61.2 64.7 66.4 63.3 68.3 65.3 66.6 69.4 68.1 68.2 68.5 68.7 68.8 69.6 68.9 69.8 69.9 70.5 70.5 70.6 71.1
Refrigerant Type   R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32
  GWP   675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675
  Circuits Quantity   1 1 1 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2
  Charge kg 10 11 12.5 15 14 18 18 17 36 38 36 42 43 50 44 57 58 60 62 80 90
Charge Per circuit kgCO2Eq 6,750 7,425 8,437.5 5,062.5 9,450 6,075 6,075 11,475 12,150 12,825 24,300 14,175 14,512.5 33,750 14,850 19,237.5 19,575 20,250 20,925 27,000 30,375
Piping connections Evaporator water inlet/outlet (OD)   76.1 76.1 76.1 88.9 76.1 88.9 88.9 76.1 88.9 88.9 76.1 88.9 88.9 76.1 88.9 88.9 88.9 88.9 114.3 114.3 114.3
Space cooling A Condition 35°C Pdc kW 76.32 104.78 123.67 149.61 164.58 180.89 199.92 203.05 230.33 247.63 265.52 289.52 310.75 328.17 329.79 397.33 441.96 486.05 532.44 576.51 634.99
    EERd   2.26 2.6 2.33 2.27 2.26 2.47 2.36 2.21 2.59 2.48 2.3 2.44 2.41 2.69 2.35 2.7 2.43 2.46 2.31 2.35 2.53
  B Condition 30°C Pdc kW 51.19 80.57 91.52 100.44 131.13 129.67 156.34 135.52 160.86 183.25 208.66 233.2 216.78 266.18 244.04 275.1 343.81 347.76 417.51 398.85 469.89
    EERd   3.95 3.86 3.55 3.91 3.58 3.77 3.61 3.84 3.92 3.52 3.56 3.73 3.88 3.78 3.38 3.96 3.64 3.76 3.56 3.69 3.77
  C Condition 25°C Pdc kW 35.87 49.25 58.13 70.32 77.35 85.02 93.96 95.43 108.25 116.39 124.8 136.07 146.05 155.88 155 186.75 187.7 245.52 246.57 247.85 308.38
    EERd   4.66 4.96 4.56 4.57 4.89 4.69 4.76 4.31 4.95 4.78 5.03 4.71 4.7 5.24 4.76 4.9 5.11 4.99 5.02 5.12 5.18
  D Condition 20°C Pdc kW 16.03 22 25.97 31.42 34.56 37.99 41.98 42.64 48.37 52 55.76 63.04 63 68.92 69.26 83.44 100.28 100.28 111.81 121.07 133.35
    EERd   5.06 5.52 4.82 5.29 5.53 5.27 5.45 4.54 6.45 5.66 6.44 6.51 6.49 5.65 5.86 6.23 6.46 6.72 6.71 6.48 6.08
  ηs,c % 149 161.4 149 149 163.8 153 153.8 149.8 168.6 157.4 167.4 165 167.4 173 158.6 173.8 171 173.4 169 171.8 173.4
General Supplier/Manufacturer details Name and address   Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy
LW(A) Sound power level (according to EN14825) dB(A) 61.2 64.7 66.4 63.3 68.3 65.3 66.6 69.4 68.1 68.2 68.5 68.7 68.8 69.6 68.9 69.8 69.9 70.5 70.5 70.6 71.1
Cooling Cdc (Degradation cooling)   0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Standard rating conditions used Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application
Power consumption in other than active mode Crankcase heater mode PCK W 0.066 0.066 0.066 0.132 0.066 0.132 0.132 0.066 0.132 0.132 0.099 0.132 0.132 0.099 0.132 0.132 0.165 0.165 0.198 0.198 0.198
  Off mode POFF W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  Standby mode Cooling PSB W 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.15 0.2 0.2 0.15 0.2 0.2 0.25 0.25 0.3 0.3 0.3
  Thermostat-off mode PTO Cooling W 0.156 0.166 0.196 0.232 0.196 0.262 0.262 0.216 0.262 0.262 0.249 0.312 0.312 0.259 0.312 0.342 0.375 0.375 0.438 0.438 0.438
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Unit Starting current Max A 213 313 324 284 462 384 395 498 411 422 546 572 583 587 595 635 680 717 761 798 839
  Running current Cooling Nom. A 62 71 87 119 119 128 143 151 151 165 189 203 216 202 231 245 298 324 378 402 414
    Max A 73 86 96 143 132 156 167 168 183 195 215 241 253 256 264 305 349 386 431 467 508
  Max unit current for wires sizing A 80 94 106 157 146 171 183 185 202 214 237 265 278 282 290 335 384 425 474 514 559
Fans Nominal running current (RLA) A 3 5 5 6 6 8 8 8 9 9 9 11 11 13 11 15 15 17 17 19 24
Compressor Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
  Maximum running current A 66 91 88 131 152 185 182 157 180 177 230 222 248 235 245 309 383 387 461 466 470
  Starting method   Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line
Notes (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0
  (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281
  (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding
  (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition
  (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request.
  (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options.
  (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data.
  (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only
  (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans
  (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced.
  (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage.
  (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book