EWAT085B-XRA1 EWAT115B-XRA1 EWAT145B-XRA1 EWAT180B-XRA2 EWAT185B-XRA1 EWAT200B-XRA2 EWAT220B-XRA2 EWAT230B-XRA1 EWAT250B-XRA2 EWAT280B-XRA2 EWAT300B-XRA1 EWAT310B-XRA2 EWAT320B-XRA2 EWAT360B-XRA1 EWAT370B-XRA2 EWAT430B-XRA2 EWAT470B-XRA2 EWAT540B-XRA2 EWAT600B-XRA2 EWAT660B-XRA2 EWAT700B-XRA2
Cooling capacity Nom. kW 81.68 108.36 135.38 167.75 165.77 187.07 207.97 223.94 238.24 264.17 284.03 283.97 301.05 327.53 345.32 393.29 437.99 500 569.48 618.9 656.69
  Rated kW 81.68 108.36 135.38 167.75 165.77 187.07 207.97 223.94 238.24 264.17 284.03 283.97 301.05 327.53 345.32 393.29 437.99 500 569.48 618.9 656.69
Capacity control Method   Staged Staged Staged Variable Staged Variable Variable Staged Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable
  Minimum capacity % 50 38 50 25 38 21 19 50 17 16 24 14 22 33 19 17 25 14 12 11 17
Power input Cooling Nom. kW 30.9 39 47 59.1 70.5 69.8 80.7 79.2 86.4 92.2 104 103 114 121 130 146 163 188 207 224 242
EER 2.64 2.78 2.88 2.84 2.35 2.68 2.58 2.83 2.76 2.87 2.71 2.76 2.63 2.7 2.66 2.68 2.68 2.66 2.74 2.76 2.71
ESEER 4.02 4.18 4.08 4.24 4.04 4.21 4.17 4.16 4.15 4.34 4.31 4.12 4.04 4.24 4.15 4.15 4.12 4.2 4.21 4.25 4.23
IPLV 4.74 5.1 4.76 5 4.78 5 5.05 4.82 4.93 5.09 5.15 5.02 4.72 5.05 4.9 4.86 4.82 4.91 5.07 4.99 4.99
SEER 3.84 4.24 4.08 4.17 4.08 4.24 4.24 4.2 4.36 4.49 4.59 4.44 4.24 4.45 4.32 4.47 4.26 4.54 4.61 4.6 4.58
Dimensions Unit Depth mm 2,660 3,180 3,780 2,326 3,780 2,326 2,326 3,226 3,226 3,226 3,226 3,226 3,226 4,126 4,126 4,126 5,025 5,025 5,874 6,774 6,774
    Height mm 1,801 1,801 1,822 2,540 1,822 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540
    Width mm 1,204 1,204 1,204 2,236 1,204 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236
Weight Operation weight kg 752 846 968 1,743 1,088 1,773 1,801 1,997 2,066 2,209 2,234 2,241 2,277 2,614 2,655 2,848 3,268 3,497 3,916 4,290 4,432
  Unit kg 744 837 961 1,732 1,072 1,763 1,790 1,977 2,054 2,192 2,212 2,220 2,247 2,590 2,627 2,811 3,237 3,458 3,873 4,248 4,396
Casing Colour   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white
  Material   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
Water heat exchanger Type   Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate
  Water flow rate Cooling Nom. l/s 3.9 5.2 6.5 8 7.9 9 10 10.7 11.4 12.6 13.6 13.6 14.4 15.7 16.5 18.8 21 23.9 27.3 29.6 31.5
  Water pressure drop Cooling Nom. kPa 27.8 34.2 28 36.3 38 44.2 37.7 44 48.2 35.6 55.1 40.6 45.1 71.4 57.9 49.5 60.2 52.5 66.5 62.6 69.7
  Water volume l 5 6 9 11 12 11 11 16 14 19 20 19 19 20 20 28 28 42 42 50 50
  Insulation material   Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell
Air heat exchanger Type   Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel
Heat exchanger Indoor side   water water water water water water water water water water water water water water water water water water water water water
  Outdoor side   Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air
Fan Quantity   6 8 10 4 10 4 4 5 5 6 6 6 6 7 7 8 9 10 12 13 14
  Type   Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller
  Air flow rate Nom. l/s 6,673 8,896 11,122 15,054 11,122 15,054 15,054 18,819 18,818 22,582 22,582 22,582 22,582 26,346 26,346 30,110 33,874 37,637 45,164 48,928 52,692
    Cooling Rated m³/h 24,022.8 32,025.6 40,039.2 54,194.4 40,039.2 54,194.4 54,194.4 67,748.4 67,744.8 81,295.2 81,295.2 81,295.2 81,295.2 94,845.6 94,845.6 108,396 121,946.4 135,493.2 162,590.4 176,140.8 189,691.2
  Diameter mm 450 450 450 800 450 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800
  Speed rpm 1,108 1,108 1,108 700 1,108 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700
Fan motor Drive   Phase cut Phase cut Phase cut VFD driven Phase cut VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven
  Input Cooling W 2,000 2,700 3,400 3,600 3,500 3,600 3,600 4,400 4,400 5,300 5,300 5,300 5,300 6,200 6,200 7,100 8,000 8,900 10,600 11,500 12,400
Compressor Quantity   2 2 2 4 2 4 4 2 4 4 3 4 4 3 4 4 4 5 6 6 6
  Type   Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression
  Driver   Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor
  Oil Charged volume l 6.5 7.69 8.88 13 10.7 14.1 15.3 12.6 16.5 17.2 17 18.4 19.6 18.9 21.4 23.3 25.2 29.6 34 35.9 37.8
Operation range Air side Cooling Max. °CDB 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46
      Min. °CDB -10 -10 -10 -18 -10 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18
  Water side Cooling Max. °CDB 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
      Min. °CDB -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13
Sound power level Cooling Nom. dBA 77.9 81.9 84 84.2 86 84.5 84.8 86.2 85.8 86.6 87 86.7 86.9 87.7 87.6 88.3 88.9 89.3 90 90.4 90.7
Sound pressure level Cooling Nom. dBA 60.2 63.9 65.6 65.3 67.7 65.5 65.8 66.7 66.3 67.1 67.5 67.2 67.4 67.8 67.7 68.3 68.5 68.9 69.2 69.3 69.6
Refrigerant Type   R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32
  GWP   675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675
  Circuits Quantity   1 1 1 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2
  Charge kg 10.5 12.5 15 30 16 36 37 30 42 48 36 50 52 50 58 62 70 78 80 92 100
Charge Per circuit kgCO2Eq 7,087.5 8,437.5 10,125 10,125 10,800 12,150 12,487.5 20,250 14,175 16,200 24,300 16,875 17,550 33,750 19,575 20,925 23,625 26,325 27,000 31,050 33,750
Piping connections Evaporator water inlet/outlet (OD)   76.1 76.1 76.1 88.9 76.1 88.9 88.9 76.1 88.9 88.9 76.1 88.9 88.9 76.1 88.9 88.9 88.9 114.3 114.3 114.3 114.3
Space cooling A Condition 35°C Pdc kW 81.68 108.36 135.38 167.75 165.77 187.07 207.97 223.94 238.24 264.17 284.03 283.97 301.05 327.53 345.32 393.29 437.99 500 569.48 618.9 656.69
    EERd   2.64 2.78 2.88 2.84 2.35 2.68 2.58 2.83 2.76 2.87 2.71 2.76 2.63 2.7 2.66 2.68 2.68 2.66 2.74 2.76 2.71
  B Condition 30°C Pdc kW 60.44 81.03 100.18 124.13 129.85 132.31 159.72 165.71 163.54 188.79 214.67 189.3 216.51 265.67 255.54 274.61 324.11 354.77 430.86 412.34 485.95
    EERd   3.74 3.92 3.85 3.81 3.66 3.94 3.81 3.82 3.99 4.03 3.92 4.02 3.91 3.79 3.71 4 3.57 3.94 3.88 3.95 3.78
  C Condition 25°C Pdc kW 38.39 50.93 63.63 78.84 77.91 87.92 97.75 105.25 111.97 124.16 133.5 133.47 141.49 156.01 162.3 184.85 205.86 246.83 249.2 311.95 314.5
    EERd   4.69 5.14 4.75 5.02 4.87 5.03 5.07 4.78 4.99 5.19 5.24 5.13 4.94 5.31 4.9 4.95 4.92 5.03 5.25 5.18 5.26
  D Condition 20°C Pdc kW 17.15 22.76 28.43 35.23 34.81 39.28 43.67 47.03 50.03 55.48 59.65 62.62 63.22 68.78 72.52 82.59 91.98 100.58 119.59 129.97 137.91
    EERd   5.06 5.72 5.02 6.25 5.37 6.35 6.34 5.17 6.44 6.5 6.81 6.23 5.6 5.77 6.36 6.42 5.8 6.86 6.97 6.73 6.76
  ηs,c % 213.28 166.6 160.2 163.8 160.2 166.6 166.6 165 171.4 176.6 180.6 174.6 166.6 175 169.8 175.8 167.4 178.6 181.4 181 180.2
General Supplier/Manufacturer details Name and address   Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy
LW(A) Sound power level (according to EN14825) dB(A) 60.2 63.9 65.6 65.3 67.7 65.5 65.8 66.7 66.3 67.1 67.5 67.2 67.4 67.8 67.7 68.3 68.5 68.9 69.2 69.3 69.6
Cooling Cdc (Degradation cooling)   0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Standard rating conditions used Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application Medium temperature application
Power consumption in other than active mode Crankcase heater mode PCK W 0.066 0.066 0.066 0.132 0.066 0.132 0.132 0.066 0.132 0.132 0.099 0.132 0.132 0.099 0.132 0.132 0.132 0.165 0.198 0.198 0.198
  Off mode POFF W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  Standby mode Cooling PSB W 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.15 0.2 0.2 0.15 0.2 0.2 0.2 0.25 0.3 0.3 0.3
  Thermostat-off mode PTO Cooling W 0.156 0.166 0.196 0.262 0.196 0.262 0.282 0.216 0.282 0.312 0.259 0.312 0.312 0.259 0.312 0.342 0.342 0.405 0.438 0.458 0.458
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Unit Starting current Max A 215 315 328 290 464 388 399 505 415 543 554 555 566 591 603 639 676 725 777 814 851
  Running current Cooling Nom. A 60 71 83 113 118 128 143 134 151 164 177 179 194 204 221 250 276 319 352 381 410
    Max A 75 87 100 149 134 160 172 175 187 212 223 224 235 260 272 309 345 394 447 483 520
  Max unit current for wires sizing A 82 96 110 164 148 176 189 192 206 234 246 246 259 286 299 340 380 433 491 532 572
Fans Nominal running current (RLA) A 6 8 10 8 10 8 8 10 10 12 12 12 12 14 14 16 19 21 25 27 29
Compressor Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
  Maximum running current A 66 91 88 131 152 157 183 157 180 218 230 243 240 235 245 309 314 387 461 466 470
  Starting method   Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line
Notes (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0
  (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281
  (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding
  (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition
  (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request.
  (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options.
  (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data.
  (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only
  (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans
  (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced.
  (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage.
  (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book