EWWD340I-SS EWWD400I-SS EWWD460I-SS EWWD550I-SS EWWD650I-SS EWWD700I-SS EWWD800I-SS EWWD850I-SS EWWD900I-SS EWWD950I-SS EWWDC10I-SS EWWDC12I-SS EWWDC13I-SS EWWDC14I-SS EWWDC15I-SS EWWDC16I-SS EWWDC17I-SS EWWDC18I-SS
Cooling capacity Nom. kW 332 (1) 392 (1) 458 (1) 536 (1) 637 (1) 703 (1) 779 (1) 841 (1) 907 (1) 982 (1) 1,024 (1) 1,151 (1) 1,200 (1) 1,270 (1) 1,341 (1) 1,395 (1) 1,449 (1) 1,503 (1)
Heating capacity Nom. kW 405 (2) 481 (2) 562 (2) 660 (2) 783 (2) 863 (2) 955 (2) 1,032 (2) 1,112 (2) 1,207 (2) 1,267 (2) 1,412 (2) 1,475 (2) 1,560 (2) 1,648 (2) 1,721 (2) 1,793 (2) 1,866 (2)
Capacity control Method   Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless
  Minimum capacity % 25.0 25.0 25.0 25.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 8.3 8.3 8.3 8.3 8.3 8.3 8.3
Power input Cooling Nom. kW 73.5 (1) 88.6 (1) 104 (1) 124 (1) 146 (1) 160 (1) 176 (1) 191 (1) 205 (1) 225 (1) 243 (1) 262 (1) 275 (1) 290 (1) 307 (1) 325 (1) 344 (1) 363 (1)
  Heating Nom. kW 73.5 (2) 88.6 (2) 104 (2) 124 (2) 146 (2) 160 (2) 176 (2) 191 (2) 205 (2) 225 (2) 243 (2) 262 (2) 275 (2) 290 (2) 307 (2) 325 (2) 344 (2) 363 (2)
EER 4.51 (1) 4.43 (1) 4.39 (1) 4.31 (1) 4.37 (1) 4.38 (1) 4.41 (1) 4.40 (1) 4.42 (1) 4.37 (1) 4.22 (1) 4.40 (1) 4.36 (1) 4.38 (1) 4.37 (1) 4.29 (1) 4.21 (1) 4.14 (1)
COP 5.51 (2) 5.43 (2) 5.39 (2) 5.31 (2) 5.37 (2) 5.38 (2) 5.41 (2) 5.40 (2) 5.42 (2) 5.37 (2) 5.22 (2) 5.40 (2) 5.36 (2) 5.38 (2) 5.37 (2) 5.29 (2) 5.21 (2) 5.14 (2)
ESEER 4.55 4.46 4.44 4.37 4.99 5.18 5.00 5.13 4.92 5.05 4.82 4.96 5.00 5.00 4.99 5.00 4.91 4.79
IPLV 5.41 5.28 5.26 5.19 5.83 6.27 5.81 6.16 5.76 5.90 5.64 5.71 5.74 5.76 5.74 5.74 5.65 5.45
Dimensions Unit Depth mm 3,298 3,298 3,298 3,298 4,116 4,116 4,116 4,116 4,116 4,116 4,116 4,439 4,439 4,439 4,439 4,439 4,439 4,439
    Height mm 1,821 1,821 1,821 1,821 2,103 2,103 2,103 2,103 2,103 2,103 2,103 2,323 2,323 2,323 2,323 2,323 2,323 2,323
    Width mm 1,466 1,466 1,466 1,466 1,350 1,350 1,350 1,350 1,350 1,350 1,350 2,130 2,130 2,130 2,130 2,130 2,130 2,130
Weight Unit kg 2,150 2,160 2,179 2,224 3,909 3,927 3,945 3,971 3,996 4,080 4,092 6,079 6,097 6,136 6,174 6,192 6,210 6,228
  Operation weight kg 2,380 2,396 2,410 2,457 4,217 4,228 4,243 4,262 4,288 4,369 4,386 6,628 6,646 6,670 6,699 6,717 6,735 6,761
Casing Colour   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white
  Material   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
Water heat exchanger - evaporator Type   Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube
  Water volume l 193 193 183 172 271 263 256 248 241 233 233 472 504 489 472 472 472 472
  Water flow rate Nom. l/s 15.9 18.8 21.9 25.7 30.5 33.6 37.3 40.3 43.4 47.0 49.0 55.1 57.4 60.8 64.2 66.8 69.4 72.0
  Water pressure drop Cooling Nom. kPa 37 50 54 62 55 44 57 53 44 54 39 52 55 46 57 62 66 71
    Heating Nom. kPa 37 50 54 62 55 44 57 53 44 54 39 52 55 46 57 62 66 71
  Insulation material   Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell
Water heat exchanger - condenser Type   Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube Single pass shell and tube
  Water volume l 37 43 48 61 74 80 86 93 100 117 122 135 143 151 159 167 174 183
  Water flow rate Nom. l/s 19.5 23.1 27.0 31.7 18.8 19.1 23.0 23.2 26.8 27.2 30.5 22.6 22.6 22.9 26.4 26.4 26.4 29.9
  Water flow rate 2 Nom. l/s         18.8 22.4 23.0 26.5 26.8 30.8 30.5 22.6 22.6 26.1 26.4 26.4 29.9 29.9
  Water flow rate 3 Nom. l/s                       22.6 25.6 26.1 26.4 29.9 29.9 29.9
  Water pressure drop Cooling Nom. kPa 26 28 30 26 25 25 27 28 26 22 23 24 24 25 24 24 24 23
    Heating Nom. kPa 26 28 30 26 25 26 27 28 26 23 23 24 24 25 24 24 24 23
  Water pressure drop 2 Cooling Nom. kPa         25 26 27 26 26 23 23 24 24 23 24 24 23 23
  Water pressure drop 3 Cooling Nom. kPa                       24 22 23 24 23 23 23
Compressor Type   Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor
  Oil Charged volume l 16 16 16 16 32 32 32 32 32 32 32 48 48 48 48 48 48 48
  Quantity   1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3
Sound power level Cooling Nom. dBA 94 97 97 97 97 97 98 99 100 100 100 100 101 101 103 103 103 103
Sound pressure level Cooling Nom. dBA 75 (3) 76 (3) 78 (3) 78 (3) 78 (3) 78 (3) 79 (3) 80 (3) 81 (3) 81 (3) 81 (3) 80 (3) 81 (3) 81 (3) 83 (3) 83 (3) 83 (3) 83 (3)
Operation range Evaporator Cooling Min. °CDB -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8
      Max. °CDB 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
  Condenser Cooling Min. °CDB 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
      Max. °CDB 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55
Refrigerant Type   R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a
  Circuits Quantity   1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3
  GWP   1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430
Charge Per circuit kg 54.0 52.0 60.0 55.0 55.0 60.0 75.0 55.0 55.0 50.0 50.0 52.0 51.7 51.3 51.0 50.7 50.3 58.0
  Per circuit TCO2Eq 77.2 74.4 85.8 78.7 78.7 85.8 107.3 78.7 78.7 71.5 71.5 74.4 73.9 73.4 72.9 72.5 72.0 82.9
Piping connections Evaporator water inlet/outlet (OD)   168.3mm 168.3mm 168.3mm 168.3mm 168.3mm 168.3mm 168.3mm 168.3mm 168.3mm 168.3mm 168.3mm 219.1mm 219.1mm 219.1mm 219.1mm 219.1mm 219.1mm 219.1mm
  Condenser water inlet/outlet (OD)   5" 5" 5" 5" 5" 5" 5" 5" 5" 5" 5" 5" 5" 5" 5" 5" 5" 5"
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Unit Starting current Max A 330 464 464 464 493 627 650 681 681 703 703 836 867 898 898 920 942 942
  Running current Cooling Nom. A 119 145 166 196 236 262 288 310 329 355 382 431 450 470 493 520 547 574
    Max A 204 233 271 299 407 436 465 504 542 570 597 698 737 775 814 841 868 896
  Max unit current for wires sizing A 224 256 298 328 448 480 512 554 597 627 657 768 810 853 895 925 955 985
Compressor Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
  Maximum running current A 204 233 271 299 204 204 233 233 271 271 299 233 233 233 271 271 271 299
  Starting method   Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta
Compressor 2 Maximum running current A         204 233 233 271 271 299 299 233 233 271 271 271 299 299
Compressor 3 Maximum running current A                       233 271 271 271 299 299 299
Notes Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation. Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation.
  Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation
  Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744
  Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load
  Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current Nominal current cooling mode is referred to the following conditions: evaporator 12/7°C; condenser 30/35°C; compressors current
  Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope Maximum running current is based on max compressor absorbed current in its envelope
  Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage.
  Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1 Maximum current for wires sizing: compressor full load ampere x 1.1
  Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water
  For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS).
  Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.