Specifications Table for EWYD-BZSS

EWYD250BZSS EWYD270BZSS EWYD290BZSS EWYD320BZSS EWYD340BZSS EWYD370BZSS EWYD380BZSS EWYD410BZSS EWYD440BZSS EWYD460BZSS EWYD510BZSSB3 EWYD530BZSSB3 EWYD570BZSSB3 EWYD580BZSS EWYD510BZSS (Archived) EWYD520BZSS (Archived)
Cooling capacity Nom. kW 253 (1) 272 (1) 291 (1) 323 (1) 337 (1) 363 (1) 380 (1) 411 (1) 433 (1) 455 (1) 515 533 569 580 (1) 502 (1) 519 (1)
Heating capacity Nom. kW 271 (2) 298 (2) 325 (2) 334 (2) 350 (2) 380 (2) 412 (2) 445 (2) 465 (2) 477 (2) 532.86 560.55 618.33 618 (2) 533 (2) 561 (2)
Capacity control Method   Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless
  Minimum capacity % 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 9.0 9 9 9 9.0 9.0 9.0
Power input Cooling Nom. kW 91.3 (1) 101 (1) 110 (1) 117 (1) 125 (1) 135 (1) 144 (1) 154 (1) 165 (1) 163 (1) 183 189 217 218 (1) 182 (1) 189 (1)
  Heating Nom. kW 91.4 (2) 100 (2) 108 (2) 118 (2) 126 (2) 133 (2) 143 (2) 157 (2) 167 (2) 165 (2) 177.37 184.84 208.14 208 (2) 178 (2) 186 (2)
EER 2.77 (1) 2.70 (1) 2.65 (1) 2.75 (1) 2.69 (1) 2.68 (1) 2.63 (1) 2.66 (1) 2.62 (1) 2.79 (1) 2.81 2.81 2.62 2.67 (1) 2.76 (1) 2.74 (1)
COP 2.96 (2) 2.97 (2) 3.00 (2) 2.82 (2) 2.78 (2) 2.85 (2) 2.88 (2) 2.83 (2) 2.79 (2) 2.88 (2) 3.004 3.033 2.971 2.97 (2) 2.99 (2) 3.01 (2)
ESEER 3.93 3.92 3.89 3.95 3.89 3.90 3.82 3.91 3.89 4.18       3.93 4.01 4.01
Dimensions Unit Depth mm 3,547 3,547 3,547 4,428 4,428 4,428 4,428 5,329 5,329 6,659 6,659 6,659 6,659 6,659 6,659 6,659
    Height mm 2,335 2,335 2,335 2,335 2,335 2,335 2,335 2,335 2,335 2,280 2,280 2,280 2,280 2,280 2,280 2,280
    Width mm 2,254 2,254 2,254 2,254 2,254 2,254 2,254 2,254 2,254 2,254 2,254 2,254 2,254 2,254 2,254 2,254
Weight Operation weight kg 3,550 3,595 3,640 4,010 4,010 4,068 4,138 4,518 4,518 5,255 5,724 5,964 5,953 5,953 5,724 5,964
  Unit kg 3,410 3,455 3,500 3,870 3,870 3,940 4,010 4,390 4,390 5,015 5,495 5,735 5,735 5,735 5,495 5,735
Water heat exchanger Type   Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Shell and tube Shell and tube Shell and tube Single pass shell & tube Single pass shell & tube Single pass shell & tube
  Water volume l 138 138 138 133 133 128 128 128 128 240 229 229 218 218 229 229
Air heat exchanger Type   High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler
Fan Air flow rate Nom. l/s 31,729 31,422 31,115 42,306 42,306 42,337 41,487 52,882 52,882 63,458 62,640 61,652 48,191 62,231 62,640 61,652
  Speed rpm 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900
Compressor Quantity   2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
  Type   Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor
Sound power level Cooling Nom. dBA 101 101 101 101 101 101 101 102 102 104 103.6 103.6 103.6 104 104 104
Sound pressure level Cooling Nom. dBA 82 (4) 82 (4) 82 (4) 82 (4) 82 (4) 82 (4) 82 (4) 83 (4) 83 (4) 84 (4) 83.7 83.7 83.7 84 (4) 84 (4) 84 (4)
Refrigerant Type   R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a
  GWP   1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430       1,430 1,430 1,430
  Circuits Quantity   2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
  Charge kg                     141 141 147      
Charge Per circuit kg 43.0 44.0 43.0 46.0 46.5 46.5 47.0 50.0 50.0 47.0       49.0 47.0 47.0
  Per circuit TCO2Eq 61.5 62.9 61.5 65.8 66.5 66.5 67.2 71.5 71.5 67.2       70.1 67.2 67.2
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
Compressor Starting method   VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven Inverter driven Inverter driven Inverter driven VFD driven VFD driven VFD driven
Notes (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation.       (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation.
  (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation.       (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 50.0/45.0, unit at full load operation.
  (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825.       (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825.
  (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744       (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (4) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744
  (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.       (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (5) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced.       (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (6) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced.
  (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.       (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (7) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current       (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (8) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage.       (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage. (9) - Maximum unit current for wires sizing is based on minimum allowed voltage.
  (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1       (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (10) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  (11) - Fluid: Water (11) - Fluid: Water (11) - Fluid: Water (11) - Fluid: Water (11) - Fluid: Water (11) - Fluid: Water (11) - Fluid: Water (11) - Fluid: Water (11) - Fluid: Water (11) - Fluid: Water       (11) - Fluid: Water (11) - Fluid: Water (11) - Fluid: Water
  (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS).       (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (12) - For more details on the operating limits please refer to the Chiller Selection Software (CSS).
  (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.       (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.