|
EWAD820C-PS |
EWAD890C-PS |
EWAD980C-PS |
EWADC11C-PS |
EWADC12C-PS |
EWADC13C-PS |
EWADC14C-PS |
EWADC15C-PS |
EWADC16C-PS |
Cooling capacity |
Nom. |
kW |
817.6 |
885.9 |
972.7 |
1,069 |
1,152 |
1,273 |
1,383 |
1,470 |
1,554 |
Capacity control |
Method |
|
Fixed |
Fixed |
Fixed |
Fixed |
Fixed |
Fixed |
Fixed |
Fixed |
Fixed |
|
Minimum capacity |
% |
12.5 |
12.5 |
12.5 |
12.5 |
12.5 |
12.5 |
12.5 |
12.5 |
12.5 |
Power input |
Cooling |
Nom. |
kW |
228.9 |
252.7 |
276.2 |
306.1 |
335.3 |
368.5 |
402.3 |
433.4 |
463 |
EER |
3.572 |
3.506 |
3.522 |
3.494 |
3.438 |
3.457 |
3.439 |
3.392 |
3.357 |
ESEER |
4.22 |
4.25 |
4.3 |
4.29 |
4.14 |
4.23 |
4.07 |
4.06 |
4.03 |
Dimensions |
Unit |
Depth |
mm |
8,985 |
8,985 |
8,985 |
9,885 |
9,885 |
11,185 |
12,085 |
12,085 |
12,085 |
|
|
Height |
mm |
2,540 |
2,540 |
2,540 |
2,540 |
2,540 |
2,540 |
2,540 |
2,540 |
2,540 |
|
|
Width |
mm |
2,285 |
2,285 |
2,285 |
2,285 |
2,285 |
2,285 |
2,285 |
2,285 |
2,285 |
Weight |
Operation weight |
kg |
8,130 |
8,130 |
8,700 |
9,330 |
9,590 |
10,380 |
10,720 |
10,720 |
10,720 |
|
Unit |
kg |
7,530 |
7,530 |
7,660 |
8,290 |
8,550 |
9,390 |
9,730 |
9,730 |
9,730 |
Water heat exchanger |
Type |
|
Shell and tube |
Shell and tube |
Shell and tube |
Shell and tube |
Shell and tube |
Shell and tube |
Shell and tube |
Shell and tube |
Shell and tube |
|
Water volume |
l |
599 |
599 |
1,043 |
1,027 |
1,027 |
995 |
979 |
979 |
979 |
Air heat exchanger |
Type |
|
High efficiency fin and tube type – Copper Aluminum |
High efficiency fin and tube type – Copper Aluminum |
High efficiency fin and tube type – Copper Aluminum |
High efficiency fin and tube type – Copper Aluminum |
High efficiency fin and tube type – Copper Aluminum |
High efficiency fin and tube type – Copper Aluminum |
High efficiency fin and tube type – Copper Aluminum |
High efficiency fin and tube type – Copper Aluminum |
High efficiency fin and tube type – Copper Aluminum |
Fan |
Air flow rate |
Nom. |
l/s |
96,196 |
96,196 |
96,196 |
106,885 |
106,885 |
117,573 |
128,262 |
128,262 |
128,262 |
|
Speed |
rpm |
900 |
900 |
900 |
900 |
900 |
900 |
900 |
900 |
900 |
Compressor |
Quantity |
|
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
|
Type |
|
Driven vapour compression |
Driven vapour compression |
Driven vapour compression |
Driven vapour compression |
Driven vapour compression |
Driven vapour compression |
Driven vapour compression |
Driven vapour compression |
Driven vapour compression |
Sound power level |
Cooling |
Nom. |
dBA |
101 |
101 |
101 |
102 |
102 |
103 |
103 |
103 |
104 |
Sound pressure level |
Cooling |
Nom. |
dBA |
80 |
80 |
80 |
80 |
81 |
80 |
81 |
81 |
81 |
Refrigerant |
Type |
|
R-134a |
R-134a |
R-134a |
R-134a |
R-134a |
R-134a |
R-134a |
R-134a |
R-134a |
|
GWP |
|
1,430 |
1,430 |
1,430 |
1,430 |
1,430 |
1,430 |
1,430 |
1,430 |
1,430 |
|
Circuits |
Quantity |
|
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
|
Charge |
kg |
204 |
204 |
204 |
230 |
240 |
275 |
280 |
280 |
280 |
Charge |
Per circuit |
TCO2Eq |
145.9 |
145.9 |
145.9 |
164.5 |
171.6 |
196.6 |
200.2 |
200.2 |
200.2 |
Power supply |
Phase |
|
3~ |
3~ |
3~ |
3~ |
3~ |
3~ |
3~ |
3~ |
3~ |
|
Frequency |
Hz |
50 |
50 |
50 |
50 |
50 |
50 |
50 |
50 |
50 |
|
Voltage |
V |
400 |
400 |
400 |
400 |
400 |
400 |
400 |
400 |
400 |
Compressor |
Starting method |
|
Wye-Delta |
Wye-Delta |
Wye-Delta |
Wye-Delta |
Wye-Delta |
Wye-Delta |
Wye-Delta |
Wye-Delta |
Wye-Delta |
Notes |
(1) - Performance calculations according to EN 14511 |
(1) - Performance calculations according to EN 14511 |
(1) - Performance calculations according to EN 14511 |
(1) - Performance calculations according to EN 14511 |
(1) - Performance calculations according to EN 14511 |
(1) - Performance calculations according to EN 14511 |
(1) - Performance calculations according to EN 14511 |
(1) - Performance calculations according to EN 14511 |
(1) - Performance calculations according to EN 14511 |
|
(2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units |
(2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units |
(2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units |
(2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units |
(2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units |
(2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units |
(2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units |
(2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units |
(2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units |
|
(3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. |
(3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. |
(3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. |
(3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. |
(3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. |
(3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. |
(3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. |
(3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. |
(3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. |
|
(4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % |
(4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % |
(4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % |
(4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % |
(4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % |
(4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % |
(4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % |
(4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % |
(4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % |
|
(5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. |
(5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. |
(5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. |
(5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. |
(5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. |
(5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. |
(5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. |
(5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. |
(5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. |
|
(6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current |
(6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current |
(6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current |
(6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current |
(6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current |
(6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current |
(6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current |
(6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current |
(6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current |
|
(7) - Maximum unit current for wires sizing is based on minimum allowed voltage. |
(7) - Maximum unit current for wires sizing is based on minimum allowed voltage. |
(7) - Maximum unit current for wires sizing is based on minimum allowed voltage. |
(7) - Maximum unit current for wires sizing is based on minimum allowed voltage. |
(7) - Maximum unit current for wires sizing is based on minimum allowed voltage. |
(7) - Maximum unit current for wires sizing is based on minimum allowed voltage. |
(7) - Maximum unit current for wires sizing is based on minimum allowed voltage. |
(7) - Maximum unit current for wires sizing is based on minimum allowed voltage. |
(7) - Maximum unit current for wires sizing is based on minimum allowed voltage. |
|
(8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 |
(8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 |
(8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 |
(8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 |
(8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 |
(8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 |
(8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 |
(8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 |
(8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 |
|
(9) - Fluid: Water |
(9) - Fluid: Water |
(9) - Fluid: Water |
(9) - Fluid: Water |
(9) - Fluid: Water |
(9) - Fluid: Water |
(9) - Fluid: Water |
(9) - Fluid: Water |
(9) - Fluid: Water |
|
(10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). |
(10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). |
(10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). |
(10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). |
(10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). |
(10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). |
(10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). |
(10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). |
(10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). |
|
(11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. |
(11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. |
(11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. |
(11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. |
(11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. |
(11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. |
(11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. |
(11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. |
(11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. |