Specifications Table for EWAD-T-XRB

EWAD730T-XRB2 EWAD820T-XRB2 EWAD950T-XRB2 EWADH10T-XRB2 EWADC10T-XRB2 EWADH11T-XRB2 EWADC13T-XRB2 EWADH13T-XRB2 EWADC14T-XRB2 EWADH15T-XRB3 EWADH16T-XRB3 EWADC17T-XRB3 EWADH18T-XRB3 EWADC19T-XRB3 EWADC20T-XRB3
Cooling capacity Nom. kW 707.6 807.8 922.1 1,053 982.4 1,164 1,273 1,355 1,412 1,563 1,661 1,789 1,903 1,970 2,024
Capacity control Method   Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Stepless Stepless Stepless Stepless Stepless Stepless
  Minimum capacity % 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 8.3 8.3 8.3 8.3 8.3 8.3
Power input Cooling Nom. kW 237.3 272.1 301.1 348 338.9 374.7 426.4 452 490.7 528.7 559.8 596.8 631.7 674.4 714.9
EER 2.982 2.968 3.063 3.018 2.898 3.108 2.986 2.998 2.879 2.956 2.968 2.997 3.013 2.921 2.831
IPLV 4.92 4.56 5.1 4.65 4.57 4.67 4.65 4.69 4.62 4.51 4.53 4.56 4.57 4.54 4.48
SEER 4.2 4.2 4.3 4.2 4.2 4.2 4.2 4.2 4.2 4.18 4.16 4.19 4.24 4.20 4.22
Dimensions Unit Depth mm 5,976 5,976 7,776 8,676 7,776 9,576 9,576 10,476 10,476 11,409 12,309 13,209 14,109 14,109 14,109
    Height mm 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537
    Width mm 2,282 2,282 2,282 2,282 2,282 2,282 2,282 2,282 2,282 2,282 2,282 2,282 2,282 2,282 2,282
Weight Operation weight kg 5,604 5,825 6,451 8,259 6,451 8,587 8,878 9,232 9,235 12,096 12,362 11,883 12,103 13,111 13,111
  Unit kg 5,315 5,525 6,121 7,798 6,121 8,126 8,386 8,751 8,765 11,225 11,491 11,361 11,581 12,101 12,101
Casing Colour   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white
  Material   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
Air heat exchanger Type   Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel
Fan Quantity   12 12 16 18 16 20 20 22 22 24 26 28 30 30 30
  Type   Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans
Fan motor Drive   ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF
Compressor Quantity   2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
  Type   Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor
  Starting method   Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta
Operation range Air side Cooling Min. °CDB -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18
      Max. °CDB 46 46 46 46 46 46 46 46 46 53 53 53 53 53 53
  Water side Evaporator Min. °CDB -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8
      Max. °CDB 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
Sound power level Cooling Nom. dBA 91 91 92 92 92 93 93 93 93 97 97 97 97 98 98
Sound pressure level Cooling Nom. dBA 73 74 73 73 74 73 73 74 74 75 74 74 74 74 74
Refrigerant Type   R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a
  GWP   1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430
  Charge kg 93.6 93.6 124.8 140.4 124.8 156 156 171.6 171.6 187 203 218 234 234 234
  Circuits Quantity   2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
Piping connections Evaporator water inlet/outlet (OD)   6” 6” 6” 8" 6” 8" 8" 8" 8" 273mm 273mm 273mm 273mm 273mm 273mm
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Unit Starting current Max A 567 638 696 769 701 802 871 917 925 1,057 1,146 1,204 1,204 1,253 1,301
  Running current Cooling Nom. A 379.04 433.58 477.39 552.3 533.75 584.5 675.01 711.6 769.5 834 883 941 995 1,067 1,134
    Max A 478 523 608 699 662 778 826 882 936 964 1,093 1,166 1,239 1,299 1,360
  Max unit current for wires sizing A 524 573 666 766 725 851 905 967 1,026 1,057 1,199 1,279 1,358 1,425 1,491
Notes (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0
  (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i
  (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition
  (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request.
  (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options.
  (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data.
  (7) - Fluid: Water (7) - Fluid: Water (7) - Fluid: Water (7) - Fluid: Water (7) - Fluid: Water (7) - Fluid: Water (7) - Fluid: Water (7) - Fluid: Water (7) - Fluid: Water (7) - Fluid: Water (7) - Fluid: Water (7) - Fluid: Water (7) - Fluid: Water (7) - Fluid: Water (7) - Fluid: Water
  (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced.
  (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage.
  (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book